anni

Catalytic [3 + 2] Cycloaddition through Ring Cleavage of Simple Cyclopropanes with Isocyanates

Shinji Tsunoi, Yoshiaki Maruoka, Itaru Suzuki, and Ikuya Shibata*

Research Center for Environmental Preservation, Osaka University, 2-4 Yamadao[ka,](#page-2-0) Suita, Osaka 565-0871, Japan

S Supporting Information

[AB](#page-2-0)STRACT: [The catalytic](#page-2-0) synthesis of γ -butyrolactams was established via $[3 + 2]$ -cycloaddition of cyclopropanes with isocyanates. An organotin iodide ate complex, $MgBr^{+}[Bu_{2}SnBrI_{2}]^{-}$, was employed as an effective catalyst. Simple cyclopropanes that lack aryl or vinyl

substituents were useful precursors. Even acyl cyclopropanes were applicable. The hybrid characteristics of a tin complex, acidic MgBr⁺ with nucleophilic tin iodide, was responsible for the catalytic reaction.

[3 + 2]-Cycloadditions of cyclopropanes have proven to be a powerful strategy for the direct synthesis of five-membered carbo- and heterocycles, and such methodologies have been applied to natural product syntheses.¹ Cycloadditions are typically carried out using catalysts that include a Lewis acid or a transition metal.2−⁹ Donor−acceptor [\(D](#page-2-0)−A) cyclopropanes with aryl or vinyl substituents have been used as the active precursors in [mo](#page-2-0)[st](#page-3-0) cases. We established a $[3 + 2]$ cycloaddition using either epoxides or 2-methyleneaziridines with isocyanates and tin iodide catalysts.^{10,11} In the case of 2methyleneaziridines,^{10c} the combination of Bu_2SnI_2 with LiI showed high catalytic activity in whic[h](#page-3-0) [an](#page-3-0) ate type of tin complex such as $Li^+[SnBu_2I_3]$ $Li^+[SnBu_2I_3]$ $Li^+[SnBu_2I_3]$ ⁻ worked as an active catalytic species. Simple cyclopropanes seem to lack utility, but in the present study we developed a tin-catalyzed cycloaddition with isocyanates to form γ -butyrolactams (Scheme 1).¹² γ -

Scheme 1. Cycloadditions of Simple Cyclopropanes w[ith](#page-3-0) Isocyanates

Butyrolactams could serve as useful building blocks toward natural products and pharmaceutically relevant heterocycles.¹³ Hence, the catalytic preparation of γ -butyrolactams from simple cyclopropanes is a desirable result, particularly when usi[ng](#page-3-0) transition-metal-free catalysts.

Initially, we performed the cycloaddition of cyclopropane 1,1-carboxylate ester 1a with tosyl isocyanate (Table 1). Without a catalyst, no reaction proceeded at 25 °C for 1 h (entry 1). Using 0.1 equiv of Bu_2SnI_2 as a catalyst afforded no reaction (entry 2). Catalytic system Bu₂SnI₂−LiI was effective for the reaction of 2-methyleneaziridines,^{10c} but it was not active in cases where starting cyclopropane 1a and tosyl isocyanate were recovered quantitativel[y.](#page-3-0) However, using MgBr₂ and MgI₂ as a catalyst gave *γ*-butyrolactam 2a in 64% and 60% yield, respectively (entries 3 and 4). Furthermore, in a system that combined Bu_2SnI_2 with $MgBr_2$, product 2a was

 a_{1a} , 1 mmol; TsN=C=O, 1 mmol; Bu₂SnI₂, 0.1 mmol; MgBr₂, 0.1 mmol; solvent, 1 mL.

obtained in a quantitative yield (entry 5). Dichloromethane and dichloroethane were superior to THF as solvents (entries 5−7).

To date, transition metal or Lewis acid catalyzed cycloaddition with heterocumulenes has been applied only to donor−acceptor (D−A) cyclopropanes.¹² In a reaction with isocyanates, Tsuji et al. reported a cycloaddition of vinyl cyclopropane that was catalyzed via a [Pd](#page-3-0) complex.^{12a} In that Pd-catalyzed reaction, the formation of π -allyl palladium species was a key step. Stoltz et al. have reported a Lewis aci[d c](#page-3-0)atalyzed cycloaddition,^{12c} where the reaction passed a 1,3-dipole, which included a stable allylic or benzylic cation. In these methods, using donor−[ac](#page-3-0)ceptor cyclopropanes was essential for an effective ring cleavage. Among our results, it was noteworthy that cyclopropane 1a bears only acceptor substituents. Thus, simple cyclopropanes that lack aryl or vinyl substituents proved to be useful precursors.

With respect to our catalytic system, $Bu_2SnI_2-MgBr_2^{14}$ we have already achieved the formation of an ate complex, $MgBr^{+}[Bu_{2}SnBrI_{2}]^{-}$, which works as an active catalyst [in](#page-3-0) the

Received: July 3, 2015 Published: August 6, 2015 reactions (Scheme 2). When a tin complex, $MgBr^{+}[Bu_{2}SnBrI_{2}]^{-}$, was reacted with an equimolar amount

Scheme 2. Ate Tin Iodide Complex

of 1a at rt for 24 h, a ring-opened adduct, iodoethyl malonate, was formed in a 45% yield, whereas, using only Bu_2SnI_2 or $MgBr₂$ afforded lower yields (<10%) for the ring-opened adduct under the same conditions. The characteristic feature of the tin ate complex is its hybrid makeup, in which both an acidic magnesium cation and a nucleophilic Sn−I bond are included in the same molecule.^{14a} Thus, $MgBr⁺$ acted as a Lewis acid to activate the dicarboxylate moiety and accelerate the ring opening. Simultaneously, a pro[lon](#page-3-0)ged Sn−I bond that occupied the axial position in the TBP tin structure¹⁵ attacked the cyclopropane ring in an effective manner. Although a similar catalytic principle of MgI₂ has been repor[ted](#page-3-0),^{2g,7b-d,8a} the hybrid characteristic of the tin catalyst is one of the reasons for the higher activity than $Mgl₂$ and the accessibil[ity of sim](#page-3-0)ple cyclopropanes that lack aryl or vinyl substituents.

Table 2 shows the results of the reaction of cyclopropane 1a with various isocyanates catalyzed by $Bu_2SnI_2-MgBr_2$ under

Table 2. Cycloaddition of Cyclopropane 1a with $ArN=C=$ O^a

^ala, 1 mmol; ArN=C=O, 1 mmol; Bu_2SnI_2 , 0.1 mmol; $MgBr_2$, 0.1 mmol; dichloroethane, 1 mL; 40° C. $^{b}60^{\circ}$ C.

the optimized conditions. The reactivity was dependent upon the substituents of isocyanates. The reaction with $PhN=C=O$ proceeded at 60 °C for 24 h to give product 2b in a 35% yield (entry 1). When p -methoxyphenyl isocyanate (PMPN= C = O) was reacted, the desired product 2c could not be obtained, and both substrates were recovered quantitatively (entry 2). Other alkyl-substituted isocyanates were unreactive. However, isocyanates with electron-withdrawing substituents were reactive. p-Bromophenyl, p-chlorophenyl, and p-fluorophenyl isocyanates gave the corresponding γ-butyrolactams 2d−2f (entries 3−5). Besides halogen substituents on the aromatic rings, CF_3 –, CN groups were also allowed and gave 2g and 2h (entries 6 and 7). In particular, the reaction with p -nitrophenyl isocyanate gave the desired product 2i in an 82% yield (entry 8).

A plausible catalytic cycle is shown in Scheme 3. Initially, the tin catalyst attacked 1a at the C-2 carbon to give a metal ketene

Scheme 3. A Plausible Catalytic Cycle

acetal A. The hybrid characteristics of the tin catalyst worked well in the ring opening of cyclopropane. The preference for dichloroethane over THF as a solvent can be explained by the difference in their coordinating ability. A coordinating solvent such as THF would prevent the $MgBr⁺$ activation toward 1a. Dichloroethane did not affect the MgBr⁺ moiety; hence, the effective activation of the 1,1-carboxylate esters of 1a is possible. In a subsequent step, metal ketene acetal A was added to an isocyanate, giving a tin amide B. To make this step effective, the use of highly electrophilic isocyanates was necessary. In the last stage, the intramolecular alkylation of metal amide **B** afforded γ -butyrolactam 2, regenerating the tin catalyst.

Conventionally useful donor−acceptor cyclopropanes were also applicable in our catalytic system (Scheme 4). In the case of vinylcyclopropane 1b, the corresponding γ -butyrolactam 3 was obtained when tosyl isocyanate was reacted (eq 1). However, in the reaction with other aromatic isocyanates, no

Scheme 4. Cycloaddition of Active Cyclopropanes with $RN = C = 0$

desired products could be isolated. Under the same conditions, without isocyanates, cyclopentene derivative 4 was obtained as a rearrangement product from 1b through an intramolecular reaction of stannyl ketene acetal C to allylic iodide (eq 2).¹⁶ Thus, stannyl ketene acetal C reacted with only highly electrophilic tosyl isocyanate prior to the intramolecu[lar](#page-3-0) reaction. As another activated cyclopropane, methylenecyclopropane 1c also reacted well to give 4-methylene-γbutyrolactam 5a (eq 3). Besides tosyl isocyanate, p-nitrophenyl isocyanate was reactive to give 5b. The ring opening of methylenecyclopropane 1c afforded tin dienolate D. Thus, it is clear that the products, 5a and 5b, were derived from the α addition of the tin dienolate D.

One of the advantages of the presented tin-catalyzed reaction is that simple cyclopropanes that lack an aryl or vinyl substituent could be applicable as useful precursors. Hence, we next tried to use other simple cyclopropanes besides 1a. Fortunately, we found that benzoyl cyclopropane 1d was useful for the cycloaddition (Table 3). The desired product 6a was

Table 3. Cycloaddition of Cyclopropanes 1d−g with TsN $C = O^a$

 a_{1a} , 1 mmol; TsN=C=O, 2 mmol; Bu₂SnI₂, 0.1 mmol; MgBr₂, 0.1 mmol; dichloroethane, 1 mL. $bTsN=C=0$, 1 equiv. Conly $MgBr_2$ cat.

obtained in a 25% yield at 40 °C after 24 h (entry 1). Catalytic cycloaddition using simple acyl cyclopropanes is rare. Reactions with enones^{3e} or alkynes^{4c} have been reported using a Ni catalyst system. The cycloaddition with imines was reported via sto[ic](#page-3-0)hiometric Mgl_2 ²^d [He](#page-3-0)nce, the presented tin-catalyzed reaction with isocyanates is noteworthy in terms of application to simple acyl cyclop[ro](#page-3-0)panes. To increase the yield of desired product 6a, we found that using 2 equiv of isocyanate gave a 77% yield (entry 2). Furthermore, the reaction at 80 °C attained an 86% yield (entry 3). The reaction with $PhN=C=$ O resulted in a lower yield (20%) because of low electrophilicity of PhN=C=O. Besides benzoyl cyclopropane, p methoxyphenylcarbonyl- and p-chlorophenylcarbonyl cyclopropanes 1e and 1f were reactive to give the corresponding α -acyl-γ-butyrolactams 6b and 6c in 69% and 64% yields, respectively (entries 4 and 5). A similar product, 6d, was obtained using acetyl cyclopropane 1g (entry 6). Products 6a, 6c, and 6d were isolated as enol compounds, and 6b was a keto-type compound, all of which were detected by $^1\mathrm{H}$ NMR.

In addition to isocyanates, we next tried to use an isothiocyanate (Scheme 5). In the reaction of 1a with $PhN=$ $C = S$, although the yield of the desired 1:1 adduct was unsatisfactory, using more electrophilic p-nitrophenyl isothiocyanate afforded a moderate yield of the desired adduct 7. Scheme 5. Cycloaddition of Cyclopropane 1a with Isothiocyanate

Product 7 was derived from the addition of isothiocyanates across the $C = S$ bond.¹⁷

In conclusion, we demonstrated the catalytic synthesis of γ butyrolactams via a $[3 + 2]$ $[3 + 2]$ $[3 + 2]$ -cycloaddition with isocyanates. The organotin iodide complex MgBr⁺[Bu₂SnBrI₂]⁻ was generated from Bu_2SnI_2 and $MgBr_2$ and was employed as an effective catalyst. The hybrid character of a tin ate complex, acidic MgBr⁺ and nucleophilic tin iodide, was responsible for the catalytic reaction. Simple cyclopropanes that lack aryl or vinyl substituents were useful precursors. Even acyl cyclopropanes were useful. We are now planning tin-catalyzed cycloadditions with other electrophiles.

■ ASSOCIATED CONTENT

6 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.5b01905.

Experimental procedures and spectral data (PDF)

■ AUTHOR INFORMATION

Corresponding Author

*shibata@epc.osaka-u.ac.jp

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture and the Naito Foundation.

■ REFERENCES

(1) For reviews of activated cyclopropanes, see: (a) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151−1196. (b) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117−3179. (c) De Simone, F.; Waser, J. Synthesis 2009, 2009, 3353−3374. (d) Campbell, M. J.; Johnson, J. S.; Parsons, A. T.; Pohlhaus, P. D.; Sanders, S. D. J. Org. Chem. 2010, 75, 6317−6325. (e) Shi, M.; Lu, J.-M.; Wei, Y.; Shao, L.- X. Acc. Chem. Res. 2012, 45, 641−652. (f) Tang, P.; Qin, Y. Synthesis 2012, 44, 2969−2984. (g) Wang, Z. Synlett 2012, 23, 2311−2327. (h) Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804−818. (i) De Nanteuil, F.; De Simone, F.; Frei, R.; Benfatti, F.; Serrano, E.; Waser, J. Chem. Commun. 2014, 50, 10912−10928. (j) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed. 2014, 53, 5504−5523. (k) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol. Chem. 2015, 13, 655−671.

(2) Cycloaddition of D−A cyclopropane with aldehyde: For recent example, see: BF₃ cat.: (a) Christie, S. D. R.; Davoile, R. J.; Elsegood, M. R. J.; Fryatt, R.; Jones, R. C. F.; Pritchard, G. J. Chem. Commun. 2004, 2474−2475. (b) Miyake, Y.; Endo, S.; Moriyama, T.; Sakata, K.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2013, 52, 1758−1762. AlCl₃ cat.: (c) Sanders, S. D.; Ruiz-Olalla, A.; Johnson, J. S. Chem. Commun.

2009, 5135−5137. (d) Sathishkannan, G.; Srinivasan, K. Chem. Commun. 2014, 50, 4062-4064. SnCl₄ cat.: (e) Benfatti, F.; de Nanteuil, F.; Waser, J. Chem. - Eur. J. 2012, 18, 4844−4849. (f) Karadeolian, A.; Kerr, M. A. J. Org. Chem. 2010, 75, 6830−6841. MgI2 cat.: (g) Parsons, A. T.; Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 3122−3123. Sn(OTf)₂ cat.: (h) Pohlhaus, P. D.; Sanders, S. D.; Parsons, A. T.; Li, W.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 8642−8650. R₃SiOTf cat.: (i) Xing, S.; Li, Y.; Li, Z.; Liu, C.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2011, 50, 12605−12609. Sc(OTf)3 cat.: (j) Xing, S.; Pan, W.; Liu, C.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2010, 49, 3215−3218. (k) Smith, A. G.; Slade, M. C.; Johnson, J. S. Org. Lett. 2011, 13, 1996–1999. Yb(OTf)₃ cat.: (1) Fujino, D.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2011, 133, 9682−9685. $Ca(NTf_2)_2$ cat.: (m) Haubenreisser, S.; Hensenne, P.; Schröder, S.; Niggemann, M. Org. Lett. 2013, 15, 2262-2265. FeCl₃ cat. (n) Benfatti, F.; de Nanteuil, F.; Waser, J. Org. Lett. 2012, 14, 386− 389. Pd cat.: (o) Parsons, A. T.; Campbell, M. J.; Johnson, J. S. Org. Lett. 2008, 10, 2541−2544. (p) Mei, L-y.; Wei, Y.; Xu, Q.; Shi, M. Organometallics 2013, 32, 3544−3556. (q) Shiba, T.; Kuroda, D.; Kurahashi, T.; Matsubara, S. Synlett 2014, 25, 2005−2008.

(3) Cycloaddition of D−A cyclopropane with Michael acceptor: GaCl₃ cat.: (a) Novikov, R. A.; Tarasova, A. V.; Korolev, V. A.; Timofeev, V. P.; Tomilov, Y. V. Angew. Chem., Int. Ed. 2014, 53, 3187−3191. Pd cat.: (b) Trost, B. M.; Morris, P. J.; Sprague, S. J. J. Am. Chem. Soc. 2012, 134, 17823−17831. (c) Goldberg, A. F. G.; Stoltz, B. M. Org. Lett. 2011, 13, 4474−4476. Ni cat.: (d) Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2006, 45, 6788−6790. (e) Liu, L.; Montgomery, J. J. Am. Chem. Soc. 2006, 128, 5348−5349. Fe cat.: (f) Dieskau, A. P.; Holzwarth, M. S.; Plietker, B. J. Am. Chem. Soc. 2012, 134, 5048−5051.

(4) Cycloaddition of D−A cyclopropane with alkene: $Sc(OTf)$ ₃ cat.: (a) Zhu, W.; Fang, J.; Liu, Y.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2013, 52, 2032−2037. Zn(OTf)₂ cat. (b) Yu, Q.; Ma, S. Chem. Commun. 2012, 48, 11784−11786. Alkyne: Ni cat.: (c) Tamaki, T.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2011, 50, 12067−12070. (d) Binger, P.; Lu, Q.-H.; Wedemann, P. Angew. Chem., Int. Ed. Engl. 1985, 24, 316−317. (e) Saito, S.; Komagawa, S.; Azumaya, I.; Masuda, M. J. Org. Chem. 2007, 72, 9114−9120. Rh cat.: (f) Wender, P. A.; Pedersen, T. M.; Scanio, M. J. C. J. Am. Chem. Soc. 2002, 124, 15154− 15155. Ru cat.: (g) Trost, B. M.; Toste, F. D.; Shen, H. J. Am. Chem. Soc. 2000, 122, 2379−2380.

(5) Cycloaddition of D–A cyclopropane with Si enolate: Me₃AlCl cat.: (a) Horiguchi, Y.; Suehiro, I.; Sasaki, A.; Kuwajima, I. Tetrahedron Lett. 1993, 34, 6077–6080. SnCl₄ cat.: (b) de Nanteuil, F.; Waser, J. Angew. Chem., Int. Ed. 2011, 50, 12075−12079. (c) Serrano, E.; de Nanteuil, F.; Waser, J. Synlett 2014, 25, 2285−2288. (d) Komatsu, M.; Suehiro, I.; Horiguchi, Y.; Kuwajima, I. Synlett 1991, 1991, 771−773. $Sc(OTf)$ ₃ cat.: (e) Fang, J.; Ren, J.; Wang, Z. Tetrahedron Lett. 2008, 49, 6659–6662. Cu(ClO₄)₂cat.: (f) Xu, H.; Qu, J.-P.; Liao, S.; Xiong, H.; Tang, Y. Angew. Chem., Int. Ed. 2013, 52, 4004−4007.

(6) Cycloaddition of D−A cyclopropane with enamine: BF_3 cat.: (a) Venkatesh, C.; Singh, P. P.; Ila, H.; Junjappa, H. Eur. J. Org. Chem. 2006, 2006, 5378−5386. TMSOTf cat.: (b) Bajtos, B.; Yu, M.; Zhao, H.; Pagenkopf, B. L. J. Am. Chem. Soc. 2007, 129, 9631−9634. $Yb(OTf)$ ₃ cat.: (c) England, D. B.; Kuss, T. D. O.; Keddy, R. G.; Kerr, M. A. J. Org. Chem. 2001, 66, 4704–4709. $Cu(OTf)$ ₂ cat.: (d) Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 7851−7854. Ynamide: Sc(OTf)₃ cat.: (e) Mackay, W. D.; Fistikci, M.; Carris, R. M.; Johnson, J. S. Org. Lett. 2014, 16, 1626−1629.

(7) Cycloaddition of D−A cyclopropane with imine: BF_3 cat.: (a) Christie, S. D. R.; Davoile, R. J.; Jones, R. C. F. Org. Biomol. Chem. 2006, 4, 2683–2684. MgI₂ cat.: (b) Parsons, A. T.; Smith, A. G.; Neel, A. J.; Johnson, J. S. J. Am. Chem. Soc. 2010, 132, 9688−9692. (c) Carson, C. A.; Kerr, M. A. J. Org. Chem. 2005, 70, 8242−8244. (d) Bertozzi, F.; Gustafsson, M.; Olsson, R. Org. Lett. 2002, 4, 3147− 3150. Yb (OTf) ₃ cat.: (e) Jackson, S. K.; Karadeolian, A.; Driega, A. B.; Kerr, M. A. J. Am. Chem. Soc. 2008, 130, 4196–4201. Sc(OTf)3 cat.: (f) Kang, Y.-B.; Tang, Y.; Sun, X.-L. Org. Biomol. Chem. 2006, 4, 299−301. Ni(ClO₄)₂ cat.: (g) Zhou, Y.-Y.; Li, J.; Ling, L.; Liao, S.-H.;

Sun; Li, Y.-X.; Wang, L.-J.; Tang, Y. Angew. Chem., Int. Ed. 2013, 52, 1452−1456. Ni cat.: (h) Tombe, R.; Kurahashi, T.; Matsubara, S. Org. Lett. 2013, 15, 1791−1793. Fe cat.: (i) Pursley, D.; Plietker, B. Synlett 2014, 25, 2316−2318.

(8) Cycloaddition of D−A cyclopropane with nitrone: MgI2 cat.: (a) Ganton, M. D.; Kerr, M. A. J. Org. Chem. 2004, 69, 8554−8557. Sc(OTf)₃ cat.: (b) Zhang, Y.; Liu, F.; Zhang, J. Chem. - Eur. J. 2010, 16, 6146−6150. Yb(OTf)₃ cat.: (c) Humenny, W. J.; Kyriacou, P.; Sapeta, K.; Karadeolian, A.; Kerr, M. A. Angew. Chem., Int. Ed. 2012, 51, 11088−1109. (d) Cardona, F.; Goti, A. Angew. Chem., Int. Ed. 2005, 44, 7832−7835. (e) Gorbacheva, E. O.; Tabolin, A. A.; Novikov, R. A.; Khomutova, Y. A.; Nelyubina, Y. V.; Tomilov, Y. V.; Ioffe, S. L. Org. Lett. 2013, 15, 350−353. (f) Ding, Q.; Wang, Z.; Wu, J. Tetrahedron Lett. 2009, 50, 198−200. (g) Mikhaylov, A. A.; Novikov, R. A.; Khomutova, Y. A.; Arkhipov, D. E.; Korlyukov, A. A.; Tabolin, A. A.; Tomilov, Y. V.; Ioffe, S. L. Synlett 2014, 25, 2275−2280. $Yb(NTf_2)$ ₃ cat.: (h) Yang, H.-B.; Shi, M. Org. Biomol. Chem. 2012, 10, 8236−8243. Ni $(ClO₄)₂$ cat.: (i) Kang, Y.-B.; Sun, X.-L.; Tang, Y. Angew. Chem., Int. Ed. 2007, 46, 3918−3921. (j) Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem. Soc. 2005, 127, 5764−5765.

(9) Cycloaddition of D−A cyclopropane with nitrile: TfOH cat.: (a) Cui, B.; Ren, J.; Wang, Z. J. Org. Chem. 2014, 79, 790−796. (b) Huang, J. W.; Shi, M. Synlett 2004, 2343−2346. SnCl4 cat.: (c) Chagarovskiy, A. O.; Ivanov, K. L.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V. Chem. Heterocycl. Compd. 2012, 48, 825−827. TMSOTf cat.: (d) Yu, M.; Pagenkopf, B. L. J. Am. Chem. Soc. 2003, 125, 8122−8123.

(10) Epoxides: (a) Shibata, I.; Baba, A.; Iwasaki, H.; Matsuda, H. J. Org. Chem. 1986, 51, 2177−2184. (b) Shibata, I.; Yoshimura, N.; Baba, A.; Matsuda, H. Tetrahedron Lett. 1992, 33, 7149−7152. 2- Methyleneaziridine: (c) Takahashi, H.; Yasui, S.; Tsunoi, S.; Shibata, I. Eur. J. Org. Chem. 2013, 2013, 40−43.

(11) Synthetic uses of organotin compounds; for example, see: (a) Baba, A.; Shibata, I.; Yasuda, M. In Comprehensive Organometallic Chemistry III; Knochel, P., Ed.; Elsevier: Oxford, 2007; Vol. 9, Chapter 8, pp 341−380. (b) Pereyre, M.; Quintard, P. J.; Rahm, A. Tin in Organic Synthesis; Butterworth: London, 1987; pp 261−285. (c) Davies, A. G. Organotin Chemistry; VCH: Weinhelm, 1997; pp 166−193.

(12) Cycloaddition with $RN=C = X$: Pd cat.: (a) Yamamoto, K.; Ishida, T.; Tsuji, J. Chem. Lett. 1987, 1157–1158. AlCl₃ cat.: (b) Sun, Y.; Yang, G.; Chai, Z.; Mu, X.; Chai, J. Org. Biomol. Chem. 2013, 11, 7859−7868. Sn(OTf)₂ cat.: (c) Goldberg, A. F. G.; O'Connor, N. R.; Craig, R. A., II; Stoltz, B. M. Org. Lett. 2012, 14, 5314−5317.

(13) Ye, L.-W.; Shu, C.; Gagosz, F. Org. Biomol. Chem. 2014, 12, 1833−1845.

(14) (a) Shibata, I.; Suwa, T.; Sakakibara, H.; Baba, A. Org. Lett. 2002, 4, 301−303. (b) Shibata, I.; Suwa, T.; Ryu, K.; Baba, A. J. Org. Chem. 2001, 66, 8690−8692. (c) Shibata, I.; Suwa, T.; Ryu, K.; Baba, A. J. Am. Chem. Soc. 2001, 123, 4101−4102.

(15) Five-coordinate tin: (a) Davis, A. G. Organotin Chemistry; VCH: New York, 1997; pp 18−24. (b) Harrison, P. G. Chemistry of Tin; Blackie: London, 1989; pp 71−89. (c) Holecek, J.; Nadvornik, M.; Handlir, K.; Lycka, A. J. Organomet. Chem. 1983, 241, 177−184. (d) Nadvornik, M.; Holecek, J.; Handlir, K.; Lycka, A. J. Organomet. Chem. 1984, 275, 43−51.

(16) Related ring-opening cyclization. (a) Han, Z.; Uehira, S.; Tsuritani, T.; Shinokubo, H.; Oshima, K. Tetrahedron 2001, 57, 987− 995. (b) Coscia, R. W.; Lambert, T. H. J. Am. Chem. Soc. 2009, 131, 2496−2498.

(17) It is known that the Sn−N and Sn−S bonds add to an isothiocyanate across the C=S bond to give an adduct having a $Sn-S$ bond like C. (a) Itoh, K.; Lee, I. K.; Matsuda, I.; Sakai, S.; Ishii, Y. Tetrahedron Lett. 1967, 8, 2667−2670. (b) Itoh, K.; Fukumoto, Y.; Ishii, Y. Tetrahedron Lett. 1968, 9, 3199−3202. (c) Sakai, S.; Niimi, H.; Kobayashi, Y.; Ishii, Y. Bull. Chem. Soc. Jpn. 1977, 50, 3271−3275. (d) Bloodworth, A. J.; Davies, A. G.; Vasishtha, S. C. J. Chem. Soc. C 1967, 1309−1313. (e) Baba, A.; Shibata, I.; Kashiwagi, H.; Matsuda, H. Bull. Chem. Soc. Jpn. 1986, 59, 341−343.